Automotive Petrol Fuel, Automotive Gasoline Fuel, Petrol Chemical Composition
Softhard Solutions ShopMate Business Accounting Software for Businesses
Get Automotive Petrol Fuel Ideas and Business Accounting Database Software Offer
This Automotive Petrol - Gasoline Fuel information page, child to
Automotive Propulsion Fuels
page (fuel for car, truck, airplane, ship or train engines etc.), is provided by
Softhard Solutions Australia for our Auto Repair Shop Business users of our
ShopMate Automotive Business Accounting Database Software and our visitors.
While you are searching up on the Automotive Petrol Fuel here, if you happen
to need Automotive Business Accounting Software
for starting your new or existing automotive or any other business, at least you have found the
Best Business Accounting Database Software in your search and is offered right here on our website.
ShopMate
- Best in Small Business Accounting Database Software Products
AzureMate
- Best in Windows Azure Cloud Storage Explorer Software Products
The word "Petrol" in the Automotive Petrol Fuel was first used in
reference to the refined substance as early as 1892 (it was previously used to refer
to unrefined petroleum). The word was registered as a trade name by British wholesaler Carless, Capel & Leonard at the suggestion of Frederick Richard Simms. Although it was never officially registered as a trademark, Carless's competitors used the term "Motor Spirit" until the 1930s. It has also been suggested that the word was coined by Edward Butler in 1887. The word "Gasolene" in the Automotive Gasoline Fuel was coined in 1865 from the word gas and the chemical suffix -ine/-ene. The modern spelling was first used in 1871. The shortened form "gas" was first recorded in American English in 1905. |
![]() A modern Petrol pump. ![]() Fueling a Petrol car. |
Gasoline Fuel originally referred to any liquid used as the fuel for a gasoline-powered
engine, other than Diesel fuel or liquefied gas; methanol racing fuel would
have been classed as a type of Gasoline.
In Germany and some other European countries, Gasoline is called Benzin.
The usage does not derive from Bertha Benz, who used chemist shops to purchase
the Gasoline for her famous drive from Mannheim to Pforzheim in 1888, but
from the chemical benzene.
Petrol or Gasoline is a petroleum-derived liquid mixture consisting
mostly of aliphatic hydrocarbons and enhanced with aromatic hydrocarbons toluene,
benzene or iso-octane to increase octane ratings, primarily used as fuel in internal
combustion engines. Most Commonwealth countries or former Commonwealth countries,
with the exception of Canada, use the term "Petrol" (abbreviated from petroleum
spirit).
The term "Gasoline" is commonly used in North America where it is often shortened
in colloquial usage to "gas". This should be distinguished in usage from genuinely
gaseous fuels used in internal combustion engines such as liquefied petroleum gas
(which is stored pressurized as a liquid but is allowed to return naturally to a
gaseous state before combustion). The term mogas, short for motor Gasoline,
distinguished automobile fuel from aviation Gasoline, or avgas. The word
"Gasoline" can also be used in British English to refer to a different petroleum
derivative historically used in lamps; however, this use is now uncommon.
Early Uses of Petrol
Before internal-combustion engines were invented in the mid 19th century, Gasoline
was sold in small bottles as a treatment against lice and their eggs. At that time,
the word Petrol was a trade name. This treatment method is no longer common,
because of the inherent fire hazard and the risk of dermatitis.
In the U.S., Gasoline was also sold as a cleaning fluid to remove grease
stains from clothing. Before dedicated filling stations were established, early
motorists would buy Gasoline in cans to fill their tanks.
The name Gasoline is similar to that of other petroleum products of the day,
most notably petroleum jelly, a highly purified heavy distillate, which was branded
Vaseline. The trademark Gasoline, however, was never registered, and thus
became generic. Gasoline was also used in kitchen ranges and for lighting,
and is still available in a highly purified form, known as camping fuel or white
gas, for use in lanterns and portable stoves.
During the Franco-Prussian War (1870–1871), pétrole was stockpiled in Paris for
use against a possible German-Prussian attack on the city. Later in 1871, during
the revolutionary Paris Commune, rumours spread around the city of pétrole uses,
women using bottles of Petrol to commit arson against city buildings.
Petrol Chemical Analysis and Composition
Petrol fuel is produced in oil refineries. Material that is separated from
crude oil via distillation, called virgin or straight-run Gasoline, does
not meet the required specifications for modern engines (in particular octane rating),
but will form part of the blend. The bulk of a typical Gasoline consists
of hydrocarbons with between 5 and 12 carbon atoms per molecule.
Many of these hydrocarbons are considered hazardous substances and are regulated
in the United States by Occupational Safety and Health Administration. The Material
Safety Data Sheet for unleaded Gasoline shows at least fifteen hazardous
chemicals occurring in various amounts. These include benzene (up to 5% by volume),
toluene (up to 35% by volume), naphthalene (up to 1% by volume), trimethylbenzene
(up to 7% by volume), MTBE (up to 18% by volume) and about 10 others.
The various refinery streams blended together to make Petrol all have different characteristics. Some important streams are:
-
Reformate, produced in a catalytic reformer with a high octane rating and high
aromatic content, and very low olefins (alkenes).
-
Cat Cracked Gasoline or Cat Cracked Naphtha, produced from a catalytic cracker,
with a moderate octane rating, high olefins (alkene) content, and moderate aromatics
level. Here, "cat" is short for "catalyst".
-
Hydrocrackate (Heavy, Mid, and Light), produced from a hydrocracker, with medium
to low octane rating and moderate aromatic levels.
-
Virgin or Straight-run Naphtha (has many names), directly from crude oil with low
octane rating, low aromatics (depending on the crude oil), some naphthenes (cycloalkanes)
and no olefins (alkenes).
-
Alkylate, produced in an alkylation unit, with a high octane rating and which is
pure paraffin (alkane), mainly branched chains.
- Isomerate (various names) which is obtained by isomerising the pentane and hexane in light virgin naphthas to yield their higher octane isomers.
(The terms used here are not always the correct chemical terms. They are the jargon
normally used in the oil industry. The exact terminology for these streams varies
by refinery and by country.) Overall a typical Gasoline is predominantly
a mixture of paraffins (alkanes), naphthenes (cycloalkanes), aromatics and olefins
(alkenes).
The exact ratios can depend on:
-
the oil refinery that makes the Gasoline, as not all refineries have the
same set of processing units
-
the crude oil used by the refinery on a particular day
- the grade of Petrol, in particular the octane rating.
Currently many countries set tight limits on Petrol aromatics in general, benzene in particular, and olefins (alkene) content. This is increasing the demand for high octane pure paraffin (alkane) components, such as alkylate, and is forcing refineries to add processing units to reduce the benzene content.
Petrol can also contain some other organic compounds: such as organic ethers (deliberately added), plus small levels of contaminants, in particular sulfur compounds such as disulfides and thiophenes. Some contaminants, in particular thiols and hydrogen sulfide, must be removed because they cause corrosion in engines.
Petrol Volatility
Petrol is more volatile than Diesel oil, Jet-A or kerosene, not only
because of the base constituents, but because of the additives that are put into
it. The final control of volatility is often achieved by blending with butane. The
Reid Vapor Pressure test is used to measure the volatility of Gasoline. The
desired volatility depends on the ambient temperature: in hotter climates, Gasoline
components of higher molecular weight and thus lower volatility are used.
In cold climates, too little volatility results in cars failing to start. In hot
climates, excessive volatility results in what is known as "vapour lock" where combustion
fails to occur, because the liquid fuel has changed to a gaseous fuel in the fuel
lines.
In the United States, volatility is regulated in large urban centers to reduce the
emission of unburned hydrocarbons. In large cities, so-called reformulated Petrol
that is less prone to evaporation, among other properties, is required. In Australia
summer Petrol volatility limits are set by State Governments and vary between
capital cities. Most countries simply have a summer, winter and perhaps intermediate
limit.
Volatility standards may be relaxed (allowing more Gasoline components into
the atmosphere) during emergency anticipated Gasoline shortages. For example,
on 31 August 2005 in response to Hurricane Katrina, the United States permitted
the sale of non-reformulated Gasoline in some urban areas, which effectively
permitted an early switch from summer to winter-grade Gasoline.
As mandated by EPA administrator Stephen L. Johnson, this "fuel waiver" was made
effective through 15 September 2005. Though relaxed volatility standards may increase
the atmospheric concentration of volatile organic compounds in warm weather, higher
volatility Gasoline effectively increases a nation's Gasoline supply
because the amount of butane in the Gasoline pool is allowed to increase.
Petrol Octane Rating
An important characteristic of Petrol is its octane rating, which is a measure of how resistant Petrol is to the abnormal combustion phenomenon known as detonation (also known as knocking, pinging, spark knock, and other names). Deflagration is the normal type of combustion. Octane rating is measured relative to a mixture of 2,2,4-trimethylpentane (an isomer of octane) and n-heptane. There are a number of different conventions for expressing the octane rating; therefore, the same fuel may be labeled with a different number, depending upon the system used.
Petrol Octane Rating and World War II
During World War II Germany received much of its oil from Romania. From 2.8 million
barrels in 1938, Romania's exports to Germany increased to 13 million barrels by
1941, a level that was essentially maintained through 1942 and 1943, before dropping
by half, due to Allied bombing and mining of the Danube.
Although these exports were almost half of Romania's total production, they were
considerably less than what the Germans expected. Even with the addition of the
Romanian deliveries, overland oil imports after 1939 could not make up for the loss
of overseas shipments. In order to become less dependent on outside sources, the
Germans undertook a sizable expansion program of their own meager domestic oil pumping.
After 1938, the Austrian oil fields were made available, and the expansion of Nazi
crude oil output was chiefly concentrated there. Primarily as a result of this expansion,
the Reich's domestic output of crude oil increased from approximately 3.8 million
barrels in 1938 to almost 12 million barrels in 1944. Even this was not enough.
Instead, Germany had developed a synthetic fuel capacity that was intended to replace
imported or captured oil. Fuels were generated from coal, using either the Bergius
process or the Fischer-Tropsch process. Between 1938 and 1943, synthetic fuel output
underwent a respectable growth from 10 million barrels to 36 million. The percentage
of synthetic fuels compared with the yield from all sources grew from 22 percent
to more than 50 percent by 1943. The total oil supplies available from all sources
for the same period rose from 45 million barrels in 1938 to 71 million barrels in
1943.
By the early 1930s, automobile Gasoline had an octane reading of 40 and aviation
Gasoline of 75-80. Aviation Gasoline with such high octane numbers
could only be refined through a process of distillation of high-grade petroleum.
Germany's domestic oil was not of this quality. Only the additive tetra-ethyl lead
could raise the octane to a maximum of 87. The license for the production of this
additive was acquired in 1935 from the American holder of the patents, but without
high-grade Romanian oil even this additive was not very effective.
In the US the oil was not "as good," and the oil industry had to invest heavily
in various expensive boosting systems. This turned out to have benefits: the US
industry started delivering fuels of increasing octane ratings by adding more of
the boosting agents, and the infrastructure was in place for a post-war octane-agents
additive industry.
Good crude oil was no longer a factor during wartime, and by
war's end, American aviation fuel was commonly 130 to 150 octane. This high octane
could easily be used in existing engines to deliver much more power by increasing
the pressure delivered by the superchargers. The Germans, relying entirely on "good"
Gasoline, had no such industry, and instead had to rely on ever-larger engines
to deliver more power.
However, German aviation engines were of the direct-fuel-injection type, and could
use methanol-water injection and nitrous oxide injection, which gave 50% more engine
power for five minutes of dogfight. This could be done only five times or after
40 hours run-time, and then the engine would have to be rebuilt. Most German aero
engines used 87 octane fuel (called B4), while some high-powered engines used 100
octane (C2/C3) fuel.
This historical "issue" is based on a very common misapprehension about wartime
fuel octane numbers. There are two octane numbers for each fuel, one for lean mix
and one for rich mix, rich being always greater. So, for example, a common British
aviation fuel of the later part of the war was 100/125.
The misunderstanding that
German fuels have a lower octane number (and thus a poorer quality) arises because
the Germans quoted the lean mix octane number for their fuels while the Allies quoted
the rich mix number for their fuels. Standard German high-grade aviation fuel used
in the later part of the war (given the designation C3) had lean/rich octane numbers
of 100/130. The Germans would list this as a 100 octane fuel while the Allies would
list it as 130 octane.
After the war the US Navy sent a Technical Mission to Germany to interview German
petrochemists and examine German fuel quality. Their report entitled
"Technical
Report 145-45 Manufacture of Aviation Gasoline in Germany"
chemically
analyzed the different fuels, and concluded that
"Toward the end of the war the
quality of fuel being used by the German fighter planes was quite similar to that
being used by the Allies."
Petrol Energy Content
Petrol contains about 34.6 mega-joules per litre (MJ/l) or 131 MJ/US gallon.
This is an average, Petrol blends differ, therefore actual energy content
varies from season to season and from batch to batch, as much as 4% more or less
than the average, according to the US EPA.
A high octane fuel such as LPG has a lower energy content than lower octane Gasoline,
resulting in an overall lower power output at the regular compression ratio an engine
ran at on Gasoline. However, with an engine tuned to the use of LPG (ie.
via higher compression ratios such as 12:1 instead of 8:1), this lower power output
can be overcome.
This is because higher-octane fuels allow for a higher compression
ratio - this means less space in a cylinder on its combustion stroke, hence a higher
cylinder temperature which improves efficiency according to Carnot's theorem, along
with fewer wasted hydrocarbons (therefore less pollution and wasted energy), bringing
higher power levels coupled with less pollution overall because of the greater efficiency.
The main reason for the lower energy content (per litre) of LPG in comparison to
Petrol is that it has a lower density. Energy content per kilogram is higher
than for Gasoline (higher hydrogen to carbon ratio). The weight-density of
Gasoline is about 737.22 kg/m3.
Different countries have some variation in what RON (Research Octane Number) is
standard for Gasoline, or Petrol. In the UK, ordinary regular unleaded
Petrol is 91 RON (not commonly available), premium unleaded Petrol
is always 95 RON, and super unleaded is usually 97-98 RON.
However both Shell and
BP produce fuel at 102 RON for cars with hi-performance engines, and the supermarket
chain Tesco began in 2006 to sell super unleaded Petrol rated at 99 RON.
In the US, octane ratings in fuels can vary between 86-87 AKI (91-92 RON) for regular,
through 89-90 (94-95) for mid-grade (European Premium), up to 90-94 (RON 95-99)
for premium unleaded or E10 (Super in Europe).
Additives to Petrol
Lead
The mixture known as Petrol, when used in high compression internal combustion
engines, has a tendency to ignite early (pre-ignition or detonation) causing a damaging
"engine knocking" (also called "pinging" or "pinking") noise. Early research into
this effect was led by A.H. Gibson and Harry Ricardo in England and Thomas Midgley
and Thomas Boyd in the United States. The discovery that lead additives modified
this behavior led to the widespread adoption of the practice in the 1920s and therefore
more powerful higher compression engines.
The most popular additive was tetra-ethyl lead. However, with the discovery of the
environmental and health damage caused by the lead, and the incompatibility of lead
with catalytic converters found on virtually all newly sold US automobiles since
1975, this practice began to wane in the 1980s. Most countries are phasing out leaded
fuel; different additives have replaced the lead compounds. The most popular additives
include aromatic hydrocarbons, ethers and alcohol (usually Ethanol or methanol).
In the U.S., where lead was blended with Gasoline (primarily to boost octane
levels) since the early 1920s, standards to phase out leaded Gasoline were
first implemented in 1973. In 1995, leaded fuel accounted for only 0.6 % of total
Gasoline sales and less than 2,000 tons of lead per year. From January 1,
1996, the Clean Air Act banned the sale of leaded fuel for use in on-road vehicles.
Possession and use of leaded Gasoline in a regular on-road vehicle now carries
a maximum $10,000 fine in the United States. However, fuel containing lead may continue
to be sold for off-road uses, including aircraft, racing cars, farm equipment, and
marine engines until 2008. The ban on leaded Gasoline led to thousands of
tons of lead not being released in the air by automobiles. Similar bans in other
countries have resulted in lowering levels of lead in people's bloodstreams.
A side effect of the lead additives was protection of the valve seats from erosion.
Many classic cars' engines have needed modification to use lead-free fuels since
leaded fuels became unavailable. However, "Lead substitute" products are also produced
and can sometimes be found at auto parts stores.
Petrol, as delivered at the pump, also contains additives to reduce internal
engine carbon buildups, improve combustion, and to allow easier starting in cold
climates.
In some parts of South America, Asia, Europe and the Middle East, leaded Gasoline
is still in use. Leaded Gasoline was phased out in sub-Saharan Africa with
effect from 1 January 2006. A growing number of countries have drawn up plans to
ban leaded Gasoline in the near future.
Methylcyclopentadienyl Manganese Tricarbonyl (MMT)
Methylcyclopentadienyl manganese tricarbonyl (MMT) has been used for many years
in Canada and recently in Australia to boost octane. It also helps old cars designed
for leaded fuel run on unleaded fuel without need for additives to prevent valve
problems.
US Federal sources state that MMT is suspected to be a powerful neurotoxin and respiratory
toxin, and a large Canadian study concluded that MMT impairs the effectiveness of
automobile emission controls and increases pollution from motor vehicles.
In 1977, use of MMT was banned in the US by the Clean Air Act until the Ethyl Corporation
could prove that the additive would not lead to failure of new car emissions-control
systems. As a result of this ruling, the Ethyl Corporation began a legal battle
with the EPA, presenting evidence that MMT was harmless to automobile emissions-control
systems. In 1995, the U.S. Court of Appeals ruled that the EPA had exceeded its
authority and, as a result, MMT became a legal fuel additive in the US.[3] MMT is
nowadays manufactured by the Afton Chemical Corporation division of Newmarket Corporation.
Ethanol Alcohol
In the United States, Ethanol is sometimes added to Gasoline but sold
without an indication that it is a component. Chevron, 76, Shell, and several other
brands market ethanol-gasoline blends.
In several states, Ethanol is added by law to a minimum level which is currently
5.9%. Most fuel pumps display a sticker stating that the fuel may contain up to
10% Ethanol, an intentional disparity which allows the minimum level to be
raised over time without requiring modification of the literature/labeling. The
bill which was being debated at the time the disclosure of the presence of Ethanol
in the fuel was mandated has recently passed. This law (Energy Bill 2005) will require
all auto fuel to contain at least 10% Ethanol. Many call this fuel mix gasohol.
Dye
In the United States the most commonly used aircraft Gasoline, avgas, or
aviation gas, is known as 100LL (100 octane, low lead) and is dyed blue. Red dye
has been used for identifying untaxed (non-highway use) agricultural Diesel.
The UK uses red dye to differentiate between regular Diesel fuel, (often
referred to as DERV), which is undyed, and Diesel intended for agricultural
and construction vehicles like excavators and bulldozers. Red Diesel is still
occasionally used on HGVs which use a separate engine to power a loader crane. This
is a declining practice however, as many loader cranes are powered directly by the
tractor unit.
Oxygenate Blending
Oxygenate blending adds oxygen to the fuel in oxygen-bearing compounds such as MTBE,
ETBE and Ethanol, and so reduces the amount of carbon monoxide and unburned
fuel in the exhaust gas, thus reducing smog. In many areas throughout the US oxygenate
blending is mandated by EPA regulations to reduce smog and other airborne pollutants.
For example, in Southern California, fuel must contain 2% oxygen by weight, resulting
in a mixture of 5.6% Ethanol in Petrol. The resulting fuel is often
known as reformulated Gasoline (RFG) or oxygenated Gasoline. The federal
requirement that RFG contain oxygen was dropped May 6, 2006 because the industry
had developed VOC-controlled RFG that did not need additional oxygen.
MTBE use is being phased out in some states due to issues with contamination of
ground water. In some places it is already banned. Ethanol and to a lesser
extent the Ethanol derived ETBE are a common replacements. Especially since
Ethanol derived from biomatter such as corn, sugar cane or grain is frequent,
this will often be referred to as bio-ethanol.
A common ethanol-gasoline mix of
10% Ethanol mixed with Gasoline is called gasohol or E10, and an ethanol-gasoline
mix of 85% Ethanol mixed with Gasoline is called E85. The most extensive
use of Ethanol takes place in Brazil, where the Ethanol is derived
from sugarcane.
Over 3,400 million US gallons (13,000,000 m³) of Ethanol mostly produced
from corn was produced in the United States in 2004 for fuel use, and E85 is slowly
becoming available in much of the United States. Unfortunately many of the relatively
few stations vending E85 are not open to the general public.
The use of bioethanol,
either directly or indirectly by conversion of such Ethanol to bio-ETBE,
is encouraged by the European Union Directive on the Promotion of the use of biofuels
and other renewable fuels for transport. However since producing bio-ethanol from
fermented sugars and starches involves distillation, ordinary people in much of
Europe cannot ferment and distill their own bio-ethanol at present (unlike in the
US where getting a BATF distillation permit has been easy since the 1973 oil crisis).
Health Concerns
Many of the non-aliphatic hydrocarbons naturally present in Petrol (especially
aromatic ones like benzene), as well as many anti-knocking additives, are carcinogenic.
Because of this, any large-scale or ongoing leaks of Petrol pose a threat
to the public's health and the environment, should the Petrol reach a public
supply of drinking water. The chief risks of such leaks come not from vehicles,
but from Petrol delivery truck accidents and leaks from storage tanks.
Because of this risk, most (underground) storage tanks now have extensive measures
in place to detect and prevent any such leaks, such as sacrificial anodes. Petrol
is rather volatile (meaning it readily evaporates), requiring that storage tanks
on land and in vehicles be properly sealed. The high volatility also means that
it will easily ignite in cold weather conditions, unlike Diesel for example.
Appropriate venting is needed to ensure the level of pressure is similar on the
inside and outside. Petrol also reacts dangerously with certain common chemicals.
Petrol is also one of the sources of pollutant gases. Even Petrol
which does not contain lead or sulfur compounds produces carbon dioxide, nitrogen
oxides, and carbon monoxide in the exhaust of the engine which is running on it.
Furthermore, unburnt Petrol and evaporation from the tank, when in the atmosphere,
react in sunlight to produce photochemical smog. Addition of Ethanol increases
the volatility of Petrol.
Through misuse as an inhalant, Petrol also contributes to damage to health.
Petrol sniffing is a common way of obtaining a high for many people and has
become epidemic in some poorer communities and indigenous groups in America, Australia,
Canada, New Zealand and some Pacific Islands. In response, Opal fuel has been developed
by the BP Kwinana Refinery in Australia, and contains only 5% aromatics (unlike
the usual 25%) which inhibits the effects of inhalation.
Petrol Usage and Pricing
In 2003 The United States of America consumed 476,474,000,000 litres (476.474 gigalitres)
or about 360 million US liquid gallons (1.36 gigalitres) of Gasoline each
day. Western countries have among the highest usage rates per person. Some countries,
e.g. in Europe and Japan, impose heavy fuel taxes on fuels such as Gasoline.
Because a greater proportion of the price of Gasoline in the United States
is due to the cost of oil, rather than taxes, the price of the retail product is
subject to greater fluctuations (vs. outside the U.S.) when calculated as a percentage
of cost-per-unit, but is actually less variable in absolute terms. The U.S. used
about 510 billion litres (138 billion gallons) of Gasoline in 2006, of which
5.6% was mid-grade and 9.5% was premium grade.
Stability
When Petrol is left for a certain period of time, gums and varnishes may build up and precipitate in the Gasoline, causing "stale fuel." This will cause gums to build up in the cylinders and also the fuel lines, making it harder to start the engine. Gums and varnishes should be removed by a professional to extend engine life. Motor Petrol may be stored up to 60 days in an approved container. If it is to be stored for a longer period of time, a fuel stabilizer may be used. This will extend the life of the fuel to about 1-2 years, and keep it fresh for the next uses. Fuel stabilizer is commonly used for small engines such as lawnmower and tractor engines to promote quicker and more reliable starting.
Business Tips
Some tips on how to avoid business failure:
-
Don't underestimate the capital you need to start up the business.
-
Understand and keep control of your finances - income earned is not the same as
cash in hand.
-
More volume does not automatically mean more profit - you need to get your pricing
right.
- Make sure you have good software for your business, software that provides you with a good reporting picture of all aspects of your business operations.
See More Information On:
-
ShopMateWeb Online Cloud Based Business Database Application
-
ShopMate Desktop Automotive Database Software
-
ShopMate Desktop Modules Explained - Screen Shots
-
AzureMate Desktop Cloud Data Storage Explorer Software
-
Software Downloads and Installations
-
MotoShop Automotive Database Software
-
Accountancy - Accounting Theories
-
Ideas for Business - Business Tips